Russian Federation
Purpose: Predicting passenger traffic volumes is a complicated task because of the uneven passenger flows in time. This paper proposes a solution to this issue using the Fourier series. Methods: The statistics on the number of passengers transported are presented in a time series that has a fixed period. Each period of the time series is assigned an unknown function that matches the values of the time series in the period under study. The expression of approximate values of unknown functions is achieved by a partial sum of trigonometric Fourier series. The Fourier coefficients for each function are determined by the period number. The coefficients of the function for the forecast period are selected in accordance with the most appropriate trend. Results: The study involved selecting that explains the behavior of a time series during the forecast period with high approximation reliability. The deviation coefficient was 0.94 and the total deviation was 3.5%. Practical significance: The forecasting method described can be used to determine the transported passenger volumes, taking into account the seasonal unevenness of passenger traffic, and mobility plans can be created for the future.
Fourier series, passenger traffic, mobility plan, unevenness, seasonality, suburban transportation, forecasting
1. Filippov A. G. Opredelenie potrebnyh razmerov dvizheniya prigorodnyh poezdov s uchetom sutochnoy i vnutrisutochnoy neravnomernostey raspredeleniya passazhi- ropotoka / A. G. Filippov, S. S. Smirnov, D. V. Yazev № 1. — S. 19–31. — DOI:https://doi.org/10.20295/1815-588X-2025-1- 19-31.
2. Brillindzher D. Vremennye ryady. Obrabotka dannyh i teoriya / D. Brillindzher. — M.: Mir, 1980. — 536 s.
3. Gatin P. A. Issledovanie ciklicheskih vremennyh ryadov s peremennoy ciklichnost'yu metodom ryadov Fur'e / P. A. Gatin, V. N. Semenova // Vestnik Dimitrovgradskogo inzhenerno-tehnologicheskogo instituta. — 2018. — № 1(15). — S. 91–95.
4. Kotlyarov O. L. Nelineynaya dinamika i analiz vremennyh ryadov / O. L. Kotlyarov, A. Yu. Loskutov // Problemy analiza riska. — 2004. — T. 1. — № 2. — S. 160–177.
5. Ie O. N. Prognozirovanie vremennogo raspredeleniya passazhiropotoka na avtomobil'nom transporte na osnove metodov garmonicheskogo analiza / O. N. Ie // Vestnik Ural'skogo gosudarstvennogo universiteta putey soobscheniya. — 2023. — № 2(58). — S. 23–30.
6. Kil'dishev G. S. Analiz vremennyh ryadov i prognozirovanie / G. S. Kil'dishev, A. A. Frenkel'. — M.: Statistika, 1973. — 104 s.
7. Semenova V. N. Prilozhenie ryadov Fur'e k issledovaniyu ciklicheskih vremennyh ryadov s nebol'shim periodom / V. N. Semenova, P. A. Gatin // Vestnik Dimitrovgradskogo inzhenerno-tehnologicheskogo instituta. — 2017. — № 2(13). — S. 42–47.
8. Klepikova L. S. Garmonicheskiy analiz: metodicheskie ukazaniya k laboratornoy rabote / L. S. Klepikova, L. A. Kuharenko. — Leningrad: LIIZhT, 1987. — 16 s.
9. Melent'ev P. V. Priblizhennye vychisleniya / P. V. Melent'ev. — M.: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoy literatury, 1962. — 390 s.
10. Kolmogorov A. N. Elementy teorii funkciy i funkcional'nogo analiza: ucheb. posobie / A. N. Kolmogorov, S. V. Fomin. — M.: Fizmatlit, 2004. — 572 s.
11. Semenova V. N. Ob odnom podhode k issledovaniyu vremennyh ryadov s postoyannoy ciklichnost'yu / V. N. Semenova, P. A. Gatin // Razvitie i perspektivy vuzovskoy nauki i obrazovaniya v sovremennyh usloviyah: sbornik nauchnyh statey itogovoy nauchnoy konferencii professorsko-prepodavatel'skogo sostava. — Dimitrovgrad: DITI NIYaU MIFI, 2017. — S. 48–51.