ASSESSMENT OF DC CABLE LINE DAMAGE DURING URBAN ELECTRIC TRANSPORT OPERATION
Abstract and keywords
Abstract (English):
Purpose: To analyze the factors influencing the service life of urban electric transport cables, as well as the existing calculation models of insulation aging. Methods: The investigation will examine the factors that most influence the insulation of cable lines in urban electric transport. The efficiency of existing mathematical models will be evaluated based on the analysis of these factors and the results obtained. Results: The paper presents a comprehensive monitoring of cable lines of urban electric transport to date, as well as an analysis of the factors that influence the normal aging of cable line insulation. The efficiency of the existing mathematical models for calculating the cable insulation service life has been evaluated. Practical significance: The results of the investigation carried out have enabled a further step to be taken in the improvement of mathematical modelling for the calculation of cable line insulation service life. This can be applied in the method of ongoing monitoring and analysis of the condition of cable lines laid under the earth formation, in order to prevent potential emergencies.

Keywords:
Urban electric transport, energy management, cable lines, diagnostics, monitoring
Text
Text (PDF): Read Download

 

References

1. Pravila ustroystva elektroustanovok / NC ENAS. — M., 2000. — 552 s.

2. Ponomarev N. V. Analiz metodov diagnostiki sostoyaniya silovyh vysokovol'tnyh kabel'nyh liniy / N. V. Ponomarev // Vestnik KuzGTU. — 2012. — № 5(93). — S. 68–71.

3. Gudkov V. V. Osobennosti metodik i sredstv ispytaniy kabeley s SPE-izolyaciey / V. V. Gudkov // Energobezopasnost' i energosberezhenie. — 2009. — № 6. — S. 9–11.

4. Koykov S. N. Elektricheskoe starenie tverdyh dielektrikov / S. N. Koykov, A. N. Cikin. — L.: Energiya, 1968. — 186 s.

5. Stepanov V. M. Opredelenie elektricheskogo soprotivleniya izolyacii i emkosti kabeley / V. M. Stepanov, S. V. Ershov // Izvestiya TulGU. Tehnicheskie nauki. — 2010. — № 3–5. — S. 62–64.

6. Solomencev K. Yu. Izmeritel' toka dlya issledovaniya tokov absorbcii v dielektrikah / K. Yu. Solomencev i dr. // Sovremennye energeticheskie sistemy i kompleksy i upravlenie imi: materialy 13-oy Mezhdunarodnoy nauchno-prakticheskoy konferencii. — 2015. — S. 97–99.

7. Vlasov A. B. Faktornyy analiz diagnosticheskoy modeli teplovizionnogo kontrolya elektricheskoy mashiny / A. B. Vlasov, E. A. Muhin, B. D. Carev // Vestnik MGTU. — 2013. — № 1. — S. 46–51.

8. Urazov D. Yu. O preimuschestvah teplovizionnogo metoda analiza raboty elektrooborudovaniya / D. Yu. Urazov // Vestnik VGUIT. — 2012. — № 3. — S. 51–53.

9. Sotnikov V. V. Matematicheskoe modelirovanie sistemy lokalizacii i tipizacii povrezhdeniy rabotayuschey silovoy seti / V. V. Sotnikov // Vestnik SGTU. — 2011. — № 4(62). — S. 165–169.

10. Anikushin D. G. Analiz metodov opredeleniya mest povrezhdeniya kabel'nyh liniy na osnove nerazrushayuschey diagnostiki / D. G. Anikushin // Izvestiya TulGU. Tehnicheskie nauki. — 2012. — T. 3. — № 12. — S. 78–84.

11. Konkin A. A. Poliolefinovye volokna / A. A. Konkin, M. P. Zverev. — 3-e izd. — L.: Himiya, 1966. — 280 s.

12. Tager A. A. Fiziko-himiya polimerov / A. A. Tager; pod red. A. A. Askadskogo. — M.: Nauchnyy mir, 2007. — 576 s.

13. Whitman L. C. Calculation of life characteristics of insulation / L. C. Whitman, P. Doigan // Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. — 1954. — Vol. 73. — Iss. 3. —Pp. 193–198.

14. Zhanchipov B. D. Radiacionnaya elektrizaciya dielektrikov / B. D. Zhanchipov, K. A. Istomin // Resursoeffektivnye sistemy v upravlenii i kontrole: vzglyad v buduschee: nauchnye trudy III Mezhdunarodnoy konferencii shkol'nikov, studentov, aspirantov, molodyh uchenyh. — Tomsk: Izd-vo TPU, 2014. — T. 1. — S. 83–90.

15. Luo P. Thermal and mechanical properties analysis for EHV XLPE cables with different operating years / P. Luo et al. // 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. — Vol. 3. — Pp. 47–51.

16. Shimada A. Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing / A. Shimada et al. // IEEE Trans. Dielectr. Electr. Insul. — 2013. — Vol. 20. — Iss. 6. — Pp. 2107–2116.

17. Aras F. Aging of 154 kV underground power cable insulation under combined thermal and electrical stresses / F. Aras et al. // IEEE Electr. Insul. Mag. — 2007. — Vol. 23. — Iss. 5. — Pp. 25–33.

18. Kim C. Investigation of dielectric behavior of thermally aged XLPE cable in the high- frequency range / C. Kim et al. // Polym. Test. — 2006. — Vol. 25. — Iss. 4. — Pp. 553–561.

19. Langlois V. Thermooxidative aging of crosslinked linear polyethylene: Stabilizer consump- tion and lifetime prediction / V. Langlois et al. // Polym. Degrad. Stab. — 1993. — Vol. 40. — Iss. 3. — Pp. 399–409.

20. Gulmine J. V. Correlations between structure and accelerated artificial ageing of XLPE / J. V. Gulmine, L. Akcelrud // Eur. Polym. J. — 2006. — Vol. 42. — Iss. 3. — Pp. 553–562.

21. Celina M. Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes / M. Celina, K. T. Gillen, R. A. Assink // Polym. Degrad. Stab. — 2005. — Vol. 90. — Iss. 3. — Pp. 395–404.

22. Sugimoto M. Product analysis for polyethylene degradation by radiation and thermal ageing / M. Sugimoto et al. // Radiat. Phys. Chem. Elsevier. — 2013. — Vol. 82. — Iss. 1. — Pp. 69–73.

Login or Create
* Forgot password?