Russian Federation
Russian Federation
Russian Federation
Purpose: To develop a methodology for calculating the thaw settlement of permafrost soils of the railway subgrade under dynamic loads. To conduct a comparative analysis of the calculation results of soil settlement under dynamic loads and traditional calculations based on a static approach. Method: The initial parameters for performing settlement calculations were determined through experimental means, by conducting laboratory soil studies in a three-axis compression unit. The numerical finite element method (FEM), implemented in the specialized COMSOL Multiphysics software package, was utilized to simulate the settlement process. This complex enabled consideration of the particularities of the interaction between complex geological conditions and dynamic loads induced by railway transport movement. Results: The calculation demonstrated that the degree of railway subgrade settlement under dynamic load significantly exceeds that obtained using the traditional static calculation method. This finding emphasizes the necessity of incorporating dynamic parameters into the assessment of railway embankment stability on permafrost soils. Practical significance: It is imperative to consider dynamic loads when assessing the reliability and durability of structures in permafrost regions, as this can significantly affect the overall integrity and longevity of such structures. The implementation of the proposed technique will facilitate the accurate prediction of potential deformation and settlement of the soil foundations, thereby contributing to the prevention of premature degradation and emergency situations. Consequently, the findings of this research will be of significant practical value in enhancing the safety and efficiency of railway construction and operation in permafrost zones.
Settlement, railway transport, thawing soils, railway subgrade, dynamic loads, permafrost soils
1. Yurchenko V. A. Vechnaya merzlota: geokriologicheskie opasnosti i regional'naya degradaciya merzlyh gruntov / V. A. Yurchenko, A. V. Man'ko // IVD. — 2023. — № 8(104). — URL: https://cyberleninka.ru/article/n/vechnaya-merzlota-geokriologicheskie-opasnosti-i- regionalnaya-degradatsiya-merzlyh-gruntov.
2. Zaycev A. A. Kompleksnaya metodika avtomatizirovannoy ocenki dinamicheskoy ustoychivosti zheleznodorozhnyh nasypey: dis. … kand. tehn. nauk: 05.22.06 / A. A. Zaycev. — M., 2000. — 255 s.
3. Bushuev N. S. Osobennosti proektirovaniya trassy zheleznoy dorogi v usloviyah vechnoy merzloty / N. S. Bushuev, S. V. Shkurnikov, V. A. Gerasimov i dr. // Sovremennye tehnologii. Sistemnyy analiz. Modelirovanie. — 2019. — № 3(63). — S. 135–142.
4. GOST 12248—2010. Grunty. Metody laboratornogo opredeleniya harakteristik prochnosti i deformiruemosti.
5. ASTM D1196—93. Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements. — 2004.
6. Metodicheskie rekomendacii po provedeniyu ispytaniy v pribore trehosnogo szhatiya avtomatizirovannom GT 1.3.5 / OOO NPP GEOTEK.
7. GOST R 56353—2015. Grunty. Metody laboratornogo opredeleniya dinamicheskih svoystv dispersnyh gruntov.
8. Sal'nikov V. B. Teplotehnicheskie raschety stroitel'nyh konstrukciy s primeneniem programmnogo kompleksa COMSOL Multiphysics: ucheb.-metod. posobie / V. B. Sal'nikov, V. A. Belyakov; pod red. V. N. Alehina; M-vo obrazovaniya i nauki RF, Ural. feder. un-t. — Ekaterinburg: Izd-vo Ural. un-ta, 2016. — 48 s.
9. Prokudin I. V. Prochnost' i deformativnost' zheleznodorozhnogo zemlyanogo polotna iz glinistyh gruntov, vosprinimayuschih vibrodinamicheskuyu nagruzku: dis. … d-ra tehn. nauk: 05.22.06 / I. V. Prokudin. — L., 1982. — 458 s.
10. SP 50-101—2004. Proektirovanie i ustroystvo osnovaniy i fundamentov zdaniy i sooruzheniy.