SELECTION OF A TEST FOR THE TYPE OF INPUT DISTRIBUTION IN 5G NETWORK CHANNELS
Abstract and keywords
Abstract (English):
The relevance of the proposed study is determined by the fact that, in the context of the development of digital remote control systems for elements of the railway transport infrastructure based on 5G technology, the need for analyzing the transmission-reception channel and the operating principle of the energy detector has increased. The present paper proposes the test selection analysis for the type of input distribution in 5G channels. Purpose: to minimize the occurrence of collisions in communication channels that are the result of erroneous analysis of the input implementation. Methods: theoretical and empirical-analytical analysis of the efficiency of signal detection methods in case of intermittent transmissions. Results: the experiment was conducted with the objective of simulating random samples with a signal-to-noise ratio of no less than 10 dB in the channel. The probability of the correct decision on channel intermittency of no less than 0.7 obtained as a result of modelling confirmed the validity of choosing the Jarque–Bera test for analyzing channels with intermittent transmission. Conclusion and novelty: the author’s contribution to the issue under consideration is the development of a concept for conducting a preliminary analysis of the input implementation, with distribution indicators such as asymmetry and excess being taken into account. In the future, this will form the basis for constructing an adaptive energy detector that will operate according to the type of distribution of the processed implementation. Practical significance: the findings can be utilized to enhance the reliability and precision of energy detectors in wireless communication systems, particularly in scenarios where statistical data is limited and channel conditions are subject to change. It is evident that, given a priori information on signal distribution, the optimization of the detector setup process and the reduction of response time can be achieved.

Keywords:
NR-U technology, energy detector, Jarque–Bera test, broadband access, intermittent transmission channel
References

1. Roenkov D. N., Plehanov P. A. Mobil'nye seti pokoleniya 5G: perspektivy primeneniya // Avtomatika, svyaz', informatika. 2020. № 10. S. 2–7. DOI:https://doi.org/10.34649/AT.2020.10.10.001.

2. Metod chetyrehchastotnoy inicializacii kanalov svyazi transportnogo domena setey 5G / A. Al. Vasilec, A. An. Vasilec, A. Al'-Mufti [i dr.] // Nauchno-tehnicheskiy vestnik Povolzh'ya. 2023. № 11. S. 339–342.

3. Karpov I. V. Besprovodnaya ekskursionnaya sistema s aktivnymi metkami na osnove standarta IEEE 802.15.4 // Innovacionnye informacionnye tehnologii: materialy Vtoroy nauchno-prakticheskoy konferencii (Praga, Chehiya, 22–26 aprelya 2013 g.). T. 4. Innovacionnye informacionnye tehnologii v ekonomicheskoy i social'noy sferah. M.: MIEM NIU VShE, 2013. S. 86–90.

4. Hu F., Chen B., Zhu K. Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey // IEEE Access. 2018. Vol. 6. Pp. 15754–15776. DOI:https://doi.org/10.1109/ACCESS.2018.2802450.

5. Dvornikov S. V., Pshenichnikov A. V., Rusin A. A. Obobschennaya funkcional'naya model' radiolinii s upravleniem ee chastotnym resursom // Voprosy radioelektroniki, seriya Tehnika televideniya. 2016. Vyp. 3. S. 49–56.

6. Akhtar A. N., Arif F., Siddique A. M. Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G // Cognitive Radio in 4G/5G Wireless Communication Systems / S. S. Moghaddam (ed.). Rijeka: IntechOpen, 2018. Pp. 73–92. DOI:https://doi.org/10.5772/intechopen.80991.

7. Dvornikov S. V., Kryachko A. F., Pshenichnikov A. V. Modelirovanie radiotehnicheskih sistem v konfliktnyh situaciyah kognitivnogo haraktera // Volnovaya elektronika i infokommunikacionnye sistemy (WECONF–2019): sbornik statey XXII Mezhdunarodnoy nauchnoy konferencii (Sankt-Peterburg, Rossiya, 03–07 iyunya 2019 g.): v 2 ch. Ch. 2. SPb.: GUAP, 2019. S. 84–89.

8. Frolov A. A. Analiz sovremennyh standartov: McWILL, TD-SCDMA, WCDMA, IEEE 802.15.3a dlya primeneniya v SShP-sistemah // T-Comm — Telekommunikacii i Transport. 2012. № 9. S. 144–148.

9. Atapattu S., Tellambura C., Jiang H. Conventional Energy Detector // Detection for Spectrum Sensing in Cognitive Radio. New York: Springer, 2014. Pp. 11–26. DOI:https://doi.org/10.1007/978-1-4939-0494-5_2.

10. Dvornikov S. V., Alekseeva T. E. Raspredelenie Alekseeva i ego primenenie v zadachah chastotno-vremennoy obrabotki signalov // Informaciya i kosmos. 2006. № 3. S. 9–20.

11. Povyshenie pomehoustoychivosti signalov KAM-16 s transformirovannymi sozvezdiyami / S. V. Dvornikov, A. V. Pshenichnikov, A. A. Rusin, A. S. Dvornikov // Voprosy radioelektroniki, seriya Tehnika televideniya. 2014. Vyp. 2. S. 51–56.

12. Bokova E. A., Povetko V. N., Polev V. Yu. Modelirovanie mnogokanal'nogo energeticheskogo obnaruzhitelya dlya DMR radiosistem // Teoriya i tehnika radiosvyazi. 2023. № 2. S. 15–20.

13. Barela M. C., Marciano J. S. An Empirical Study on the Performance of a Spectrum Sensing Scheme for Cognitive Radio // Proceedings of the 17th International Symposium on Wireless Personal Multimedia Communications (WPMC), (Sydney, Australia, 07–10 September 2014). Institute of Electrical and Electronics Engineers, 2015. Pp. 474–479. DOI:https://doi.org/10.1109/WPMC.2014.7014865.

14. Efficient Energy Detection Methods for Spectrum Sensing Under Non-Flat Spectral Characteristics / S. Dikmese, P. C. Sofotasios, T. Ihalainen [et al.] // IEEE Journal on Selected Areas in Communications. 2015. Vol. 33, Iss. 5. Pp. 755–770. DOI:https://doi.org/10.1109/JSAC.2014.2361074.

15. Düzenli T., Akay O. A New Method of Spectrum Sensing in Cognitive Radio for Dynamic and Randomly Modelled Primary Users // IETE Journal of Research. 2022. Vol. 68, Iss. 2. Pp. 967–965. DOI:https://doi.org/10.1080/03772063.2019.1628668.

16. Arjoune Y., Kaabouch N. A Comprehensive Survey on Spectrum Sensing in Cognitive Radio Networks: Recent Advances, New Challenges, and Future Research Directions // Sensors. 2019. Vol. 19, Iss. 1. Art. No. 126. 32 p. DOI:https://doi.org/10.3390/s19010126.

17. Demodulyaciya signalov na osnove obrabotki ih modificirovannyh raspredeleniy / S. V. Dvornikov, A. I. Osadchiy, S. S. Dvornikov, D. V. Rodin // Kontrol'. Diagnostika. 2010. № 10. S. 46–54.

18. Aneja B., Sharma K., Rana A. Spectrum Sensing Techniques for a Cognitive Radio Network // Advances in System Optimization and Control: Select Proceedings of ICAEDC 2017. Lecture Notes in Electrical Engineering, Vol. 509 / S. N. Singh [et al.] (eds.). Singapore: Springer Singapore, 2019. Pp. 133–144. DOI:https://doi.org/10.1007/978-981-13-0665-5_11.

19. Lemons D. S. An Introduction to Stochastic Processes in Physics. Baltimore (MD): The Johns Hopkins University Press, 2002. 128 p.

20. Spektral'no-effektivnye signaly s nepreryvnoy fazoy / S. V. Dvornikov, S. S. Dvornikov, S. S. Manaenko, A. V. Pshenichnikov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2016. T. 12, № 2. S. 87–93.

21. Ameijeiras-Alonso J., Crujeiras R. M., Rodríguez-Casal A. Mode Testing, Critical Bandwidth and Excess Mass // Test. 2019. Vol. 28, Iss. 3. Pp. 900–919. DOI:https://doi.org/10.1007/s11749-018-0611-5.

22. A HOS-Based Blind Spectrum Sensing in Noise Uncertainty / A. Subekti, Sugihartono, N. R. Syambas, A. B. Suksmono // Journal of ICT Research and Applications. 2015. Vol. 9, No. 1. Pp. 20–38. DOI:https://doi.org/10.5614/itbj.ict.res.appl.2015.9.1.2.

23. Zaschita ot strukturnyh pomeh radiokanalov s chastotnoy manipulyaciey / S. V. Dvornikov, S. S. Dvornikov, R. V. Ivanov [i dr.] // Informacionnye tehnologii. 2017. T. 23, № 3. S. 193–198.

24. Len'shin A. V., Tihomirov N. M., Shatalov E. V. Opredelenie spektra shumov pomeh drobnosti v nepreryvnoy nelineynoy modeli sistemy fazovoy avtopodstroyki // Telekommunikacii. 2017. № 12. S. 2–6.

25. Dvornikov S. V., Dvornikov S. S., Pshenichnikov A. V. Apparat analiza chastotnogo resursa dlya rezhima psevdosluchaynoy perestroyki rabochey chastoty // Informacionno-upravlyayuschie sistemy. 2019. № 4 (101). S. 62–68. DOI:https://doi.org/10.31799/1684-8853-2019-4-62-68.

26. A Spectrum Sensing Algorithm Based on Statistic Tests for Cognitive Networks Subject to Fading / F. B. S. de Carvalho, J. S. Rocha, W. T. A. Lopes, M. S. Alencar // Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), (Lisbon, Portugal, 01–05 September 2014). Institute of Electrical and Electronics Engineers, 2014. Pp. 850–854.

27. Dvornikov S. V., Dvornikov S. S., Zheglov K. D. Proaktivnyy kontrol' prigodnosti radiokanalov v rezhime PPRCh // T-Comm: Telekommunikacii i Transport. 2022. T. 16, № 11. S. 15–20. DOI:https://doi.org/10.36724/2072-8735-2022-16- 11-15-20.

28. Formirovanie vektorov priznakov dlya sistem videonablyudeniya / D. V. Vasil'eva, S. S. Dvornikov, Yu. E. Tolstuha [i dr.] // Voprosy radioelektroniki, seriya Tehnika televideniya. 2023. Vyp. 4. S. 62–68.

Login or Create
* Forgot password?