GENERATING A VARIETY OF ACCEPTABLE DESIGN SOLUTIONS FOR RAILWAY ALIGNMENT IN ROUGH TERRAIN CONDITIONS
Abstract and keywords
Abstract (English):
Purpose: To create an information basis for the modernization of existing and development of new methods for optimal railway routing in areas with difficult rough terrain. Methods: Mathematical modelling, optimisation methods, and decision theory were applied. Results: A computational experiment was conducted, its stages were determined, and an algorithm was developed for forming a set of acceptable route variants on a terrain section with a longitudinal watershed, two transverse watersheds and a ravine. Practical significance: A thorough examination of the experiment’s outcomes reveals that the numerous viable railway route alternatives in regions with complex, rough terrain will provide a substantial information foundation for enhancing the mathematical support for the implementation of innovative technology in computer-aided railway designs. This should result in a significant reduction in the time required to make effective design decisions.

Keywords:
Railway alignment, route plan, design line, rough terrain, mathematical model, optimisation methods
Text
Text (PDF): Read Download
References

1. Turbin I. V. Metod optimizacii polozheniya trassy zheleznoy dorogi v plane, osno- vannyy na principah napravlennogo poiska / I. V. Turbin // Trudy MIITa. Sovershenstvovanie metodov proektirovaniya zheleznyh dorog. — 1976. — Vyp. 538. — S. 16–23.

2. Turbin I. V. Osnovy sistemy mashinnogo trassirovaniya na kosogornyh uchastkah napryazhennogo hoda / I. V. Turbin // Trudy MIITa. Voprosy povysheniya kachestva i effektiv- nosti proektnyh resheniy zheleznyh dorog. — 1978. — Vyp. 614. — S. 21–25.

3. Anisimov V. A. Chislennye metody vybora polozheniya trassy na uchastke napryazhen- nogo hoda / V. A. Anisimov // Trudy MIIT. — 1982. — Vyp. 715. — S. 98–107.

4. Struchenkov V. I. Osnovy teorii i metody optimizacii trass zheleznyh dorog i dru- gih lineynyh ob'ektov: dis. … d-ra tehn. nauk / V. I. Struchenkov. — M.: VNII transportno- go stroitel'stva, 1985. — 405 s.

5. Sheydvasser D. M. Optimizaciya trass zheleznyh dorog na napryazhennyh hodah / D. M. Sheydvasser // Avtomatizaciya proektirovaniya ob'ektov transportnogo stroitel'stva. — M.: Transport, 1986. — S. 16–29.

6. Struchenkov V. I. Metody optimizacii trass v SAPR lineynyh sooruzheniy / V. I. Struchenkov. — M.: SOLON-Press, 2020. — 272 s.

7. Struchenkov V. I. Komp'yuternye tehnologii v proektirovanii trass lineynyh soo- ruzheniy / V. I. Struchenkov // Rossiyskiy tehnologicheskiy zhurnal. — 2017. — T. 5. — № 1(15). — S. 29–41.

8. Karpov D. A. Dvuhetapnaya splayn-approksimaciya v komp'yuternom proektirovanii trass lineynyh sooruzheniy / D. A. Karpov, V. I. Struchenkov // Rossiyskiy tehnologicheskiy zhurnal. — 2021. — T. 9. — № 5. — S. 45–56. — DOI:https://doi.org/10.32362/2500-316X-2021-9-5-45-56.

9. Karpov D. A. Splayn-approksimaciya mnogoznachnyh funkciy v proektirovanii trass lineynyh sooruzheniy / D. A. Karpov, V. I. Struchenkov // Russ. Technol. J. — 2022. — T. 10. — № 4. — S. 65–74. — DOI:https://doi.org/10.32362/2500-316X-2022-10-4-65-74.

10. Karpov D. A. Optimizaciya parametrov splayna pri approksimacii mnogoznachnyh funkciy / D. A. Karpov, V. I. Struchenkov // Russ. Technol. J. — 2023. — T. 11. — № 2. — S. 72–83. — DOI:https://doi.org/10.32362/2500-316X-2023-11-2-72-83.

11. Karpov D. A. Kombinirovannye algoritmy approksimacii dlya interaktivnogo pro- ektirovaniya dorozhnyh trass v sistemah avtomatizirovannogo proektirovaniya / D. A. Karpov, V. I. Struchenkov // Russ. Technol. J. — 2023. — T. 11. — № 4. — S. 72–83. — DOI:https://doi.org/10.32362/2500- 316X-2023-11-4-72-83.

12. Struchenkov V. I. Ispol'zovanie splaynov slozhnoy struktury v proektirovanii dorozhnyh trass / V. I. Struchenkov, D. A. Karpov // Russ. Technol. J. — 2024. — T. 12. — № 1. — S. 111–122. — DOI:https://doi.org/10.32362/2500-316X-2024-12-1-111-122.

13. Bogdanov A. I. Matematicheskaya model' prodol'nogo profilya trassy novyh zheleznyh dorog / A. I. Bogdanov // Proektirovanie razvitiya regional'noy seti zheleznyh dorog. — 2018. — № 6. — S. 12–15.

14. Bogdanov A. I. Matematicheskaya model' plana trassy novyh zheleznyh dorog / A. I. Bogdanov // Proektirovanie razvitiya regional'noy seti zheleznyh dorog. — 2019. — № 7. — S. 17–23.

15. Bogdanov A. I. Obschaya model' plana i profilya dlya avtomatizirovannogo proektiro- vaniya novyh i rekonstruiruemyh zheleznyh dorog / A. I. Bogdanov // Sovremennye tehnologii. Sistemnyy analiz. Modelirovanie. — 2019. — № 3(63). — S. 142–148. — DOI:https://doi.org/10.26731/1813- 9108.2019.3(63).142-148.

16. Prening R. D. O sovershenstvovanii matematicheskih modeley i metodov trassirovaniya uchastkov zheleznyh dorog v usloviyah peresechennogo rel'efa / R. D. Prening, R. V. Vinogradov, A. Sh. Batkaeva, A. M. Lazareva // Vestnik transporta Povolzh'ya. — 2025. — № 1(109). — S. 128–135.

17. Svid. 2025610833 Rossiyskaya Federaciya. Programma formirovaniya mnozhestva vari- antov trassy zheleznoy dorogi na uchastkah s peresechennym rel'efom mestnosti: zayavl. 28.12.2024: opubl. 14.01.2025 / R. D. Prening, R. V. Vinogradov, A. Sh. Batkaeva, A. M. Lazareva; zayavitel' — Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Peterburgskiy gosudarstvennyy universitet putey soobscheniya Imperatora Aleksandra I».

Login or Create
* Forgot password?