Russian Federation
graduate student
Russian Federation
UDC 004.051
The paper considers the development of an intelligent diagnostics and recovery system for rolling stock information management system operability, based on a multi-agent architecture. Introduction: the growing complexity of rolling stock information management systems (IMS) demands for greater reliability and more advanced intelligent diagnostic and recovery systems. Traditional centralized methods can become inefficient under certain conditions. Purpose: to develop the concept of an intelligent system for diagnosing and restoring the operability of rolling stock IMS. This system is based on a multi-agent architecture that can be implemented in existing transport infrastructure. Methods: the proposed approach involves the implementation of a specialized task allocation system, wherein each agent within the system is assigned a specific task. These tasks encompass the collection of telemetric information, the analysis and filtration of data, the formation of diagnostic indicators, and the undertaking of decisions concerning the technical condition of the system. The system’s architecture facilitates multi-level organization and interaction protocols between the agents. Results: the development of an architectural model and a prototype concept has been undertaken for the purpose of demonstrating the functionality of a distributed intelligent system. The presentation has focused on the key components, interaction interface, and hardware and software implementations. Practical significance: the developed approach has the potential to enhance the stability and autonomy of transport systems in real operating conditions. Discussion: the potential for scaling the prototype and integrating it into existing IMS is a subject of discussion.
multi-agent systems, neural network technologies, transport, information management systems, automation
1. Baranovsky A. M., Bobrikov D. A. Sovremennye podkhody k diagnostike i vosstanovleniyu rabotosposobnosti informatsionno-upravlyayushchikh sistem podvizhnogo sostava s primeneniem mnogoagentnykh i neyrosetevykh tekhnologiy [Modern Approaches to Diagnostics and Recovery of Rolling Stock Information Management Systems Using Multi-Agent and Neural Network Technologies], Intellektualnye tekhnologii na transporte [Intellectual Technologies on Transport], 2025, No. 1 (41), Pp. 5–13. DOI:https://doi.org/10.20295/2413-2527-2025-141-5-13. (In Russian) EDN: https://elibrary.ru/IIIKAH
2. Wooldridge M. J. An Introduction to MultiAgent Systems. Second Edition. Chichester, Wiley, 2009, 488 p.
3. Jennings N. R., Wooldridge M. J. Applications of Intelligent Agents. In: Jennings N. R., Wooldridge M. J. (eds.) Agent Technology: Foundations, Applications, and Markets. Heidelberg, Springer Berlin, 1998, Pp. 3-28. DOI:https://doi.org/10.1007/978-3-662-03678-5_1.
4. Bochkov A. P., Khomonenko A. D., Baranovsky A. M. Model formirovaniya klasterov informativnykh uzlov integrirovannoy i raspredelennoy obrabotki dannykh v vychislitelnoy seti [Model of Formation of Clusters of Informative Nodes of Integrated and Distributed Data Processing in a Computer Network], Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli [High Technologies in Earth Space Research], 2021, Vol. 13, No. 1, Pp. 44–57. DOI:https://doi.org/10.36724/2409-5419-2021-13-1-44-57. (In Russian) EDN: https://elibrary.ru/EZMDYX
5. Bellifemine F. L., Caire G., Greenwood D. Developing Multi-Agent Systems with JADE. Chichester, Wiley, 2007, 300 p. DOI: https://doi.org/10.1002/9780470058411
6. Russell S. J., Norvig P. Artificial Intelligence: A Modern Approach. Fourth Edition. Hoboken (NJ), Pearson, 2020, 1136 p.
7. Stankevich L. A. Intellektualnye sistemy i tekhnologii: uchebnik i praktikum dlya vuzov [Intelligent systems and technologies: textbook and practical training for universities]. Moscow: Urait Publishing House, 2025, 478 p. (In Russian)
8. Andronov S. A., Fetisov V. A. Intellektualnye transportnye sistemy: uchebnoe posobie [Intelligent transport systems: a tutorial]. Moscow, IPR Media, 2024, 266 p. (In Russian)
9. Evstafyev V. A., Tyukov M. A. Iskusstvennyy intellekt i neyroseti: praktika primeneniya v reklame: uchebnoe posobie [Artificial intelligence and neural networks: practical application in advertising: a tutorial]. Moscow, Dashkov and Co., 2023, 426 p. (In Russian) EDN: https://elibrary.ru/TRJVLA
10. Vrba P., Tichý P. Mařík V., et al. Rockwell Automation’s Holonic and Multiagent Control Systems Compendium, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, Vol. 41, Iss. 1, Pp. 14–30. DOI:https://doi.org/10.1109/TSMCC.2010.2055852. EDN: https://elibrary.ru/YVTTKB
11. Werneck V. M. B., Moreira Costa R. M. E., Cysneiros L. M. Modelling Multi-Agent System Using Different Methodologies. In: Alkhateeb F., et al. (eds.) Multi-Agent Systems — Modeling, Interactions, Simulations and Case Studies. InTechOpen, 2011, Pp. 77–96. DOI:https://doi.org/10.5772/14792.
12. Luck M., McBurney P., Preist C. Agent Technology: Enabling Next Generation Computing (A Roadmap for Agent-Based Computing). Southampton, 2003, 100 p.
13. Pudovikov O. E., Tarasova V. N., Degtyareva V. V. Predictive Diagnostics of Rolling Stock and the Industrial Internet of Things, Russian Engineering Research, 2023, Vol. 43, Iss. 8. Pp. 987–990. DOI:https://doi.org/10.3103/S1068798X23080282. EDN: https://elibrary.ru/UKQHUJ
14. Shoham Y., Leyton-Brown K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. New York (NY), Cambridge University Press, 2009, 504 p. DOI: https://doi.org/10.1017/CBO9780511811654
15. Kiselev G. G. Iskusstvennyy intellekt v sisteme monitoringa, diagnostiki i prognozirovaniya tekhnicheskogo sostoyaniya podvizhnogo sostava [Artificial Intelligence in the System of Monitoring, Diagnostics and Forecasting of the Technical Condition of Rolling Stock], Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2024, Iss. 3, Pp. 621–626. DOI:https://doi.org/10.24412/2071-6168-2024-3-621-622. (In Russian) EDN: https://elibrary.ru/NJTEGQ
16. Yazinin V. S., Baranovskiy A. M., Vorobyev A. A., Romanova I. Yu. Ispolzovanie iskusstvennykh neyronnykh setey na Rossiyskikh zheleznykh dorogakh dlya kontrolya tokopriemnikov poezdov [The Use of Artificial Neural Networks on Russian Railways to Control Current Collectors of Trains], International Journal of Advanced Studies, 2023, Vol. 13, No. 1, Pp. 267–287. DOI:https://doi.org/10.12731/2227-930X-2023-13-1-267-287. (In Russian) EDN: https://elibrary.ru/UGLBCH